NBR
RecurrentLayers.NBR — TypeNBR(input_size, hidden_size;
return_state = false, kwargs...)Recurrently neuromodulated bistable recurrent cell (Vecoven et al., 2021). See NBRCell for a layer that processes a single sequence.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include a bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: hard-coded tofalsein this architecture. For the architecture with independent recurrence plese refer toBRintegration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \mathbf{a}(t) &= 1 + \tanh\left( \mathbf{W}^{a}_{ih} \mathbf{x}(t) + \mathbf{W}^{a}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{a} \right), \\ \mathbf{c}(t) &= \sigma\left( \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{W}^{c}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{c} \right), \\ \mathbf{h}(t) &= \mathbf{c}(t) \circ \mathbf{h}(t-1) + \left(1 - \mathbf{c}(t)\right) \circ \tanh\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{a}(t) \circ \mathbf{h}(t-1) + \mathbf{b}^{h} \right), \end{aligned}\]
Forward
nbr(inp, state)
nbr(inp)Arguments
inp: The input to the nbr. It should be a vector of sizeinput_size x lenor a matrix of sizeinput_size x len x batch_size.state: The hidden state of the NBR. If given, it is a vector of sizehidden_sizeor a matrix of sizehidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates.
Returns
- New hidden states
new_statesas an array of sizehidden_size x len x batch_size. Whenreturn_state = trueit returns a tuple of the hidden statsnew_statesand the last state of the iteration.