OriginalLSTM
RecurrentLayers.OriginalLSTM
— TypeOriginalLSTM(input_size => hidden_size;
return_state=false,
kwargs...)
Original long short term memory network (Hochreiter and Schmidhuber, 1997). See OriginalLSTMCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.return_state
: Option to return the last state together with the output. Default isfalse
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \tanh\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{i} \right), \\ \mathbf{c}(t) &= \mathbf{c}(t-1) + \mathbf{i}(t) \odot \mathbf{z}(t), \\ \mathbf{o}(t) &= \sigma\left( \mathbf{W}^{o}_{ih} \mathbf{x}(t) + \mathbf{W}^{o}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{o} \right), \\ \mathbf{h}(t) &= \mathbf{o}(t) \odot \tanh\left( \mathbf{c}(t) \right) \end{aligned}\]
Forward
originallstm(inp, (state, cstate))
originallstm(inp)
Arguments
inp
: The input to the originallstm. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the OriginalLSTM. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.