OriginalLSTM
RecurrentLayers.OriginalLSTM — TypeOriginalLSTM(input_size => hidden_size;
return_state=false,
kwargs...)Original long short term memory network (Hochreiter and Schmidhuber, 1997). See OriginalLSTMCell for a layer that processes a single sequence.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.return_state: Option to return the last state together with the output. Default isfalse.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \tanh\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{i} \right), \\ \mathbf{c}(t) &= \mathbf{c}(t-1) + \mathbf{i}(t) \odot \mathbf{z}(t), \\ \mathbf{o}(t) &= \sigma\left( \mathbf{W}^{o}_{ih} \mathbf{x}(t) + \mathbf{W}^{o}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{o} \right), \\ \mathbf{h}(t) &= \mathbf{o}(t) \odot \tanh\left( \mathbf{c}(t) \right) \end{aligned}\]
Forward
originallstm(inp, (state, cstate))
originallstm(inp)Arguments
inp: The input to the originallstm. It should be a vector of sizeinput_size x lenor a matrix of sizeinput_size x len x batch_size.(state, cstate): A tuple containing the hidden and cell states of the OriginalLSTM. They should be vectors of sizehidden_sizeor matrices of sizehidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates.
Returns
- New hidden states
new_statesas an array of sizehidden_size x len x batch_size. Whenreturn_state = trueit returns a tuple of the hidden statsnew_statesand the last state of the iteration.