PeepholeLSTM

RecurrentLayers.PeepholeLSTMType
PeepholeLSTM(input_size => hidden_size;
    return_state=false,
    kwargs...)

Peephole long short term memory network [Gers2002]. See PeepholeLSTMCell for a layer that processes a single sequence.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.

Keyword arguments

  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.
  • return_state: Option to return the last state together with the output. Default is false.

Equations

\[\begin{aligned} \mathbf{z}(t) &= \tanh\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \mathbf{w}^{i}_{ph} \odot \mathbf{c}(t-1) + \mathbf{b}^{i} \right), \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{w}^{f}_{ph} \odot \mathbf{c}(t-1) + \mathbf{b}^{f} \right), \\ \mathbf{c}(t) &= \mathbf{f}(t) \odot \mathbf{c}(t-1) + \mathbf{i}(t) \odot \mathbf{z}(t), \\ \mathbf{o}(t) &= \sigma\left( \mathbf{W}^{o}_{ih} \mathbf{x}(t) + \mathbf{W}^{o}_{hh} \mathbf{h}(t-1) + \mathbf{w}^{o}_{ph} \odot \mathbf{c}(t) + \mathbf{b}^{o} \right), \\ \mathbf{h}(t) &= \mathbf{o}(t) \odot \tanh\left( \mathbf{c}(t) \right) \end{aligned}\]

Forward

peepholelstm(inp, (state, cstate))
peepholelstm(inp)

Arguments

  • inp: The input to the peepholelstm. It should be a vector of size input_size x len or a matrix of size input_size x len x batch_size.
  • (state, cstate): A tuple containing the hidden and cell states of the PeepholeLSTM. They should be vectors of size hidden_size or matrices of size hidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized by Flux.initialstates.

Returns

  • New hidden states new_states as an array of size hidden_size x len x batch_size. When return_state = true it returns a tuple of the hidden stats new_states and the last state of the iteration.
source
  • Gers2002Gers, F. A. et al. Learning precise timing with LSTM recurrent networks. JMLR 2002.