RAN
RecurrentLayers.RAN
— TypeRAN(input_size => hidden_size;
return_state = false, kwargs...)
Recurrent Additive Network cell [Lee2017]. See RANCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.return_state
: Option to return the last state together with the output. Default isfalse
.
Equations
\[\begin{aligned} \tilde{\mathbf{c}}(t) &= \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{b}^{c} \\ \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{i} \right) \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{f} \right) \\ \mathbf{c}(t) &= \mathbf{i}(t) \odot \tilde{\mathbf{c}}(t) + \mathbf{f}(t) \odot \mathbf{c}(t-1) \\ \mathbf{h}(t) &= g\left( \mathbf{c}(t) \right) \end{aligned}\]
Forward
ran(inp, (state, cstate))
ran(inp)
Arguments
inp
: The input to the ran. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the RAN. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Lee2017Lee, K. et al. Recurrent Additive Networks. arXiv 2017.