SCRN
RecurrentLayers.SCRN
— TypeSCRN(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, alpha = 0.0,
return_state = false)
Structurally contraint recurrent unit [Mikolov2015]. See SCRNCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.alpha
: structural contraint. Default is 0.0.return_state
: Option to return the last state together with the output. Default isfalse
.
Equations
\[\begin{aligned} \mathbf{s}(t) &= (1 - \alpha) \, \mathbf{W}_{ih}^{s} \mathbf{x}(t) + \alpha \, \mathbf{s}(t-1) \\ \mathbf{h}(t) &= \sigma\left( \mathbf{W}_{ih}^{h} \mathbf{s}(t) + \mathbf{W}_{hh}^{h} \mathbf{h}(t-1) + \mathbf{b}^{h} \right) \\ \mathbf{y}(t) &= f\left( \mathbf{W}_{hh}^{y} \mathbf{h}(t) + \mathbf{W}_{ih}^{y} \mathbf{s}(t) + \mathbf{b}^{y} \right) \end{aligned}\]
Forward
scrn(inp, (state, cstate))
scrn(inp)
Arguments
inp
: The input to the scrn. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the SCRN. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Mikolov2015Mikolov, T. et al. Learning longer memory in recurrent neural networks. ICLR 2015.