SGRN
RecurrentLayers.SGRN
— TypeSGRN(input_size, hidden_size;
return_state = false, kwargs...)
Simple gated recurrent network [Zu2020]. See SGRNCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
Equations
\[\begin{aligned} \mathbf{f}(t) &= \sigma\left( \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{W}_{hh} \mathbf{h}(t-1) + \mathbf{b} \right) \\ \mathbf{i}(t) &= 1 - \mathbf{f}(t) \\ \mathbf{h}(t) &= \tanh\left( \mathbf{i}(t) \circ \left( \mathbf{W}_{ih} \mathbf{x}(t) \right) + \mathbf{f}(t) \circ \mathbf{h}(t-1) \right) \end{aligned}\]
Forward
sgrn(inp, state)
sgrn(inp)
Arguments
inp
: The input to the sgrn. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the SGRN. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Zu2020Zu, X. et al. _ A simple gated recurrent network for detection of power quality disturbances_ IET 2018.