TGRU
RecurrentLayers.TGRU
— TypeTGRU(input_size => hidden_size;
return_state = false, kwargs...)
Strongly typed recurrent gated unit [Balduzzi2016]. See TGRUCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
return_state
: Option to return the last state together with the output. Default isfalse
.init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{x}(t-1) + \mathbf{b}^{z} \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{x}(t-1) + \mathbf{b}^{f} \right) \\ \mathbf{o}(t) &= \tau\left( \mathbf{W}^{o}_{ih} \mathbf{x}(t) + \mathbf{W}^{o}_{hh} \mathbf{x}(t-1) + \mathbf{b}^{o} \right) \\ \mathbf{h}(t) &= \mathbf{f}(t) \odot \mathbf{h}(t-1) + \mathbf{z}(t) \odot \mathbf{o}(t) \end{aligned}\]
Forward
tgru(inp, state)
tgru(inp)
Arguments
inp
: The input to the tgru. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the TGRU. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Balduzzi2016Balduzzi, D. et al. Strongly-Typed Recurrent Neural Networks ICML 2016.