UGRNN
RecurrentLayers.UGRNN
— TypeUGRNN(input_size => hidden_size;
return_state = false, kwargs...)
Update gate recurrent neural network (Collins et al., 2017). See UGRNNCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer
Keyword arguments
return_state
: Option to return the last state together with the output. Default isfalse
.init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{c}(t) &= s\left( \mathbf{W}_{hh}^c \, \mathbf{h}(t-1) + \mathbf{W}_{xh}^c \, \mathbf{x}(t) + \mathbf{b}^c \right), \\ \mathbf{g}(t) &= \sigma\left( \mathbf{W}_{hh}^g \, \mathbf{h}(t-1) + \mathbf{W}_{xh}^g \, \mathbf{x}(t) + \mathbf{b}^g \right), \\ \mathbf{h}(t) &= \mathbf{g}(t) \circ \mathbf{h}(t-1) + \left( 1 - \mathbf{g}(t) \right) \circ \mathbf{c}(t). \end{aligned}\]
Forward
ugrnn(inp, state)
ugrnn(inp)
Arguments
inp
: The input to the ugrnn. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the UGRNN. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.