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● Vegetation plays an essential part in the 
carbon cycle

● Extreme events can disrupt carbon sinks 
with negative consequences

● Vegetation dynamics are hard to model, 
showing long term trends, seasonality, 
and an immediate response to 
atmospheric drivers

Vegetation and the Carbon Cycle

https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf
Corinne Le Quéré et al. “Trends in the sources and sinks of carbon dioxide”
Markus Reichstein et al. “Climate extremes and the carbon cycle”

https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf
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Question

Atmospheric observables     
● Precipitation sum (rr)
● Mean temperature (tg)
● Averaged sea level pressure (pp)
● Mean global radiation (qq)

Vegetation: normalized difference vegetation index (ndvi)

Can we model the unknown part of v(t)?

https://www.ecobricks.org/bare-biosphere-1000px-2/

u(t) = 

rr(t)
tg(t)
pp(t)
qq(t)

v(t) = ndvi(t) 
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Unknown
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State x(t)

Reservoir weights

W
Input weights 

Win

input u(t) output v(t)

Echo State Networks
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Output weights

Jaeger, Herbert (2001)
Pathak, Jaideep, et al. (2018)
Chattopadhyay, Ashesh, et al. (2020)
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Chosen locations

Selected locations:

● different climate zones
● diverse vegetation cover

We chose to focus on forest sites to minimize 
the imperfections in the data due to human 
activity

Data from E-OBS and FluxnetEO datasets
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https://staging.igrac.kartoza.com/layers/igrac:other_climate_2007_koppen_geiger
M. C. Peel, B. L. Finlayson, and T. A. McMahon. Updated world map of the Koppen-Geiger 
climate classification
R. C. Cornes et al. “An ensemble version of the e-obs temperature and precipitation data sets”
S. Walther, S. Besnard et al. A view from space on global flux towers by modis and landsat: the 
fluxneteo data set.

https://staging.igrac.kartoza.com/layers/igrac:other_climate_2007_koppen_geiger
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Dfb: Warm Summer Continental or Hemiboreal Climate
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Mixed forest Deciduous broad-leaved forest
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Dfc: Subartic or Boreal Climates
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Deciduous broad-leaved forest Evergreen needle-leaved forest
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Cfb: Oceanic Climate
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Evergreen needle-leaved forest Mixed forest
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Csa: Mediterranean Hot Summer Climates
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Deciduous broad-leaved forest Evergreen needle-leaved forest
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● We showed that the Echo State Networks can successfully learn the 
dynamics of ndvi in different settings, thus working as observers for 
the biosphere-atmosphere system

● Even if the data presented some strong artifacts in the training set 
the model was able to extrapolate the underlying dynamics

● The next step is an in depth comparison with other recurrent models 
(LSTM, GRU, and RNN)

Conclusions and future directions
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Thanks for your attention

Francesco Martinuzzi “Learning Biosphere Response to Climate Drivers with Echo State Observers” 
12.01.2023



12

● Based on random and untrained (fixed) recurrent neural network

● The hidden states x(t) are collected in a states matrix X
● The output layer (Wout) is computed at the end as linear regression of 

the teacher output on the reservoir states.

● The predictions leverage the same update equations to obtain the states, 
and the predicted state is obtained as

Echo State Networks
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