torchrecurrent.JANETCell

class torchrecurrent.JANETCell(input_size, hidden_size, bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function xavier_uniform_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, beta=1.0, device=None, dtype=None)

A JANET (Just Another NETwork) recurrent cell.

Implements the JANET update from “Just Another NETwork” <https://arxiv.org/abs/1804.04849>_.

\[\begin{split}\begin{aligned} \mathbf{s}(t) &= \mathbf{W}_{ih}^{f}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{f} + \mathbf{W}_{hh}^{f}\,\mathbf{h}(t-1) + \mathbf{b}_{hh}^{f}, \\ \tilde{\mathbf{c}}(t) &= \tanh\Bigl( \mathbf{W}_{ih}^{c}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{c} + \mathbf{W}_{hh}^{c}\,\mathbf{h}(t-1) + \mathbf{b}_{hh}^{c}\Bigr), \\ \mathbf{c}(t) &= \sigma\bigl(\mathbf{s}(t)\bigr)\circ \mathbf{c}(t-1) \;+\;\bigl(1 - \sigma\bigl(\mathbf{s}(t) - \beta\bigr)\bigr) \circ \tilde{\mathbf{c}}(t), \\ \mathbf{h}(t) &= \mathbf{c}(t) \end{aligned}\end{split}\]

where \(\sigma\) is the sigmoid function and \(\circ\) is the Hadamard product.

Parameters:
  • input_size (int) – Number of expected features in the input tensor.

  • hidden_size (int) – Number of features in the hidden and cell states.

  • bias (bool) – If False, the cell will not use bias terms. Default: True.

  • kernel_init (Callable) – Initializer for input‐to‐hidden weights (default: nn.init.xavier_uniform_).

  • recurrent_kernel_init (Callable) – Initializer for hidden‐to‐hidden weights (default: nn.init.xavier_uniform_).

  • bias_init (Callable) – Initializer for input biases (default: nn.init.zeros_).

  • recurrent_bias_init (Callable) – Initializer for hidden biases (default: nn.init.zeros_).

  • beta (float) – Threshold shift for the update gate. Default: 1.0.

  • device (torch.device, optional) – Device on which to place parameters.

  • dtype (torch.dtype, optional) – Data type for parameters.

Inputs:
  • inp (Tensor): shape (batch, input_size) or (input_size,)

  • state (Tensor or Tuple[Tensor, Tensor], optional): previous (h, c) each of shape (batch, hidden_size) or (hidden_size,). If not provided, defaults to zeros.

Outputs:
  • new_state (Tensor): Updated hidden state, same shape as h.

  • new_cstate (Tensor): Updated cell state, same shape as c.

weight_ih

Learnable input‐to‐hidden weights for gates and candidate, shape (2*hidden_size, input_size).

Type:

Tensor

weight_hh

Learnable hidden‐to‐hidden weights for gates and candidate, shape (2*hidden_size, hidden_size).

Type:

Tensor

bias_ih

Learnable input biases, shape (2*hidden_size,).

Type:

Tensor

bias_hh

Learnable hidden biases, shape (2*hidden_size,).

Type:

Tensor

beta

Learnable threshold shift for update gating.

Type:

Parameter

Note

JANET simplifies the LSTM by using a single gate computation and tying the hidden and output states to the cell state.

Examples::
>>> cell = JANETCell(10, 20, beta=0.5)
>>> x = torch.randn(5, 10)      # batch=5, input_size=10
>>> h0 = torch.zeros(5, 20)
>>> c0 = torch.zeros(5, 20)
>>> h1, c1 = cell(x, (h0, c0))
__init__(input_size, hidden_size, bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function xavier_uniform_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, beta=1.0, device=None, dtype=None)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Parameters:
  • input_size (int)

  • hidden_size (int)

  • bias (bool)

  • kernel_init (Callable)

  • recurrent_kernel_init (Callable)

  • bias_init (Callable)

  • recurrent_bias_init (Callable)

  • beta (float)

  • device (device | None)

  • dtype (dtype | None)

Methods

__init__(input_size, hidden_size[, bias, ...])

Initialize internal Module state, shared by both nn.Module and ScriptModule.

add_module(name, module)

Add a child module to the current module.

apply(fn)

Apply fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Return an iterator over module buffers.

children()

Return an iterator over immediate children modules.

compile(*args, **kwargs)

Compile this Module's forward using torch.compile().

cpu()

Move all model parameters and buffers to the CPU.

cuda([device])

Move all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Set the module in evaluation mode.

extra_repr()

Return the extra representation of the module.

float()

Casts all floating point parameters and buffers to float datatype.

forward(inp[, state])

Run one step of the recurrent cell.

get_buffer(target)

Return the buffer given by target if it exists, otherwise throw an error.

get_extra_state()

Return any extra state to include in the module's state_dict.

get_parameter(target)

Return the parameter given by target if it exists, otherwise throw an error.

get_submodule(target)

Return the submodule given by target if it exists, otherwise throw an error.

half()

Casts all floating point parameters and buffers to half datatype.

init_weights()

ipu([device])

Move all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict, assign])

Copy parameters and buffers from state_dict into this module and its descendants.

modules()

Return an iterator over all modules in the network.

mtia([device])

Move all model parameters and buffers to the MTIA.

named_buffers([prefix, recurse, ...])

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Return an iterator over module parameters.

register_backward_hook(hook)

Register a backward hook on the module.

register_buffer(name, tensor[, persistent])

Add a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Register a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Register a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Register a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Register a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Register a post-hook to be run after module's load_state_dict() is called.

register_load_state_dict_pre_hook(hook)

Register a pre-hook to be run before module's load_state_dict() is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Add a parameter to the module.

register_state_dict_post_hook(hook)

Register a post-hook for the state_dict() method.

register_state_dict_pre_hook(hook)

Register a pre-hook for the state_dict() method.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

Set extra state contained in the loaded state_dict.

set_submodule(target, module[, strict])

Set the submodule given by target if it exists, otherwise throw an error.

share_memory()

See torch.Tensor.share_memory_().

state_dict(*args[, destination, prefix, ...])

Return a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Move and/or cast the parameters and buffers.

to_empty(*, device[, recurse])

Move the parameters and buffers to the specified device without copying storage.

train([mode])

Set the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

uses_double_state()

Return True if forward returns (h, c), else just h.

xpu([device])

Move all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Reset gradients of all model parameters.

Attributes

T_destination

call_super_init

dump_patches

weight_ih

weight_hh

bias_ih

bias_hh

training