torchrecurrent.BRCell#
- class torchrecurrent.BRCell(input_size, hidden_size, bias=True, recurrent_bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function normal_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, device=None, dtype=None)[source]#
A Bistable recurrent cell.
[pub]
\[\begin{split}\mathbf{a}(t) &= 1 + \tanh\Bigl(\mathbf{W}_{ih}^{a}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{a} + \mathbf{w}_{hh}^{a} \,\circ\, \mathbf{h}(t-1) + \mathbf{b}_{hh}^{a}\Bigr), \\ \mathbf{c}(t) &= \sigma\Bigl(\mathbf{W}_{ih}^{c}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{c} + \mathbf{w}_{hh}^{c} \,\circ\, \mathbf{h}(t-1) + \mathbf{b}_{hh}^{c}\Bigr), \\ \mathbf{h}(t) &= \mathbf{c}(t)\,\circ\,\mathbf{h}(t-1) \;+\;\bigl(1 - \mathbf{c}(t)\bigr)\,\circ\, \tanh\Bigl(\mathbf{W}_{ih}^{h}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{h} + \mathbf{a}(t)\,\circ\,\mathbf{h}(t-1)\Bigr).\end{split}\]- Parameters:
input_size – The number of expected features in the input
x.hidden_size – The number of features in the hidden state
h.bias – If
False, the layer does not use input-side biases. Default:True.recurrent_bias – If
False, the layer does not use recurrent biases. Default:True.kernel_init – Initializer for input–hidden weights
W_ih^*. Default:torch.nn.init.xavier_uniform_().recurrent_kernel_init – Initializer for hidden recurrence vectors
w_{hh}^*. Default:torch.nn.init.normal_().bias_init – Initializer for input-side biases
b_{ih}^*whenbias=True. Default:torch.nn.init.zeros_().recurrent_bias_init – Initializer for hidden biases
b_{hh}^*whenrecurrent_bias=True. Default:torch.nn.init.zeros_().device – The desired device of parameters.
dtype – The desired floating point type of parameters.
- Inputs: input, h_0
input of shape
(batch, input_size)or(input_size,): Tensor containing input features.h_0 of shape
(batch, hidden_size)or(hidden_size,): Tensor containing the initial hidden state.
If h_0 is not provided, it defaults to zero.
- Outputs: h_1
h_1 of shape
(batch, hidden_size)or(hidden_size,): Tensor containing the next hidden state.
- Variables:
weight_ih – The learnable input–hidden weights, of shape
(3*hidden_size, input_size)(split into a/c/h parts).weight_hh – The learnable hidden recurrence vectors, of shape
(2*hidden_size,)(split into a/c parts).bias_ih – The learnable input–hidden biases, of shape
(3*hidden_size).bias_hh – The learnable hidden biases, of shape
(2*hidden_size).
Examples:
>>> cell = BRCell(10, 20) >>> x = torch.randn(5, 3, 10) # (time_steps, batch, input_size) >>> h = torch.zeros(3, 20) # (batch, hidden_size) >>> out = [] >>> for t in range(x.size(0)): ... h = cell(x[t], h) ... out.append(h) >>> out = torch.stack(out, dim=0) # (time_steps, batch, hidden_size)
- __init__(input_size, hidden_size, bias=True, recurrent_bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function normal_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, device=None, dtype=None)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(input_size, hidden_size[, bias, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(inp[, state])Run one step of the recurrent cell.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.init_weights()ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.uses_double_state()Return True if forward returns (h, c), else just h.
xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchesweight_ihweight_hhbias_ihbias_hhinput_sizehidden_sizebiasrecurrent_biastraining