torchrecurrent.AntisymmetricRNNCell
- class torchrecurrent.AntisymmetricRNNCell(input_size, hidden_size, bias=True, activation_fn=<built-in method tanh of type object>, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function normal_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, epsilon=1.0, gamma=0.0, device=None, dtype=None)
An Antisymmetric recurrent neural network (RNN) cell.
This cell implements the update rule from “AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks” <https://arxiv.org/abs/1902.09689>_.
\[\mathbf{h}(t) = \mathbf{h}(t-1) + \epsilon \cdot \tanh\Bigl( \mathbf{W}_{ih}\,\mathbf{x}(t) + \mathbf{b}_{ih} + \bigl(\mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma\,\mathbf{I}\bigr)\,\mathbf{h}(t-1) + \mathbf{b}_{hh}\Bigr)\]where \(\epsilon\) (epsilon) controls the step size, and \(\gamma\) (gamma) is a stability factor.
- Parameters:
input_size (int) – Number of expected features in the input inp.
hidden_size (int) – Number of features in the hidden state.
bias (bool) – If False, the layer does not use bias weights. Default: True.
activation_fn (Callable) – Activation function (default: torch.tanh).
kernel_init (Callable) – Initializer for input‐to‐hidden weights (default: nn.init.xavier_uniform_).
recurrent_kernel_init (Callable) – Initializer for hidden‐to‐hidden weights (default: nn.init.normal_).
bias_init (Callable) – Initializer for input bias (default: nn.init.zeros_).
recurrent_bias_init (Callable) – Initializer for hidden bias (default: nn.init.zeros_).
epsilon (float) – Step‐size multiplier for the update. Default: 1.0.
gamma (float) – Damping term subtracted along the diagonal for stability. Default: 0.0.
device (torch.device, optional) – Device for weights.
dtype (torch.dtype, optional) – Data type for weights.
- Inputs:
- inp (Tensor):
shape (batch, input_size) or (input_size,)
- state (Tensor or Tuple[Tensor, …], optional):
Previous hidden state of shape (batch, hidden_size) or (hidden_size,). If not provided, initialized to zeros.
- Outputs:
- new_state (Tensor):
Next hidden state of shape (batch, hidden_size) or (hidden_size,).
- weight_ih
Learnable input‐to‐hidden weights, shape (hidden_size, input_size).
- Type:
Tensor
- weight_hh
Learnable hidden‐to‐hidden weights, shape (hidden_size, hidden_size).
- Type:
Tensor
- bias_ih
Learnable input bias, shape (hidden_size,).
- Type:
Tensor
- bias_hh
Learnable hidden bias, shape (hidden_size,).
- Type:
Tensor
Note
This cell enforces antisymmetry by subtracting the transpose of the recurrent weight matrix and a scaled identity term.
- Examples::
>>> cell = AntisymmetricRNNCell(10, 20, epsilon=0.5, gamma=0.1) >>> x = torch.randn(5, 10) # batch=5, input_size=10 >>> h0 = torch.zeros(5, 20) # batch=5, hidden_size=20 >>> h1 = cell(x, h0)
- __init__(input_size, hidden_size, bias=True, activation_fn=<built-in method tanh of type object>, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function normal_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, epsilon=1.0, gamma=0.0, device=None, dtype=None)
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
input_size (int)
hidden_size (int)
bias (bool)
activation_fn (Callable)
kernel_init (Callable)
recurrent_kernel_init (Callable)
bias_init (Callable)
recurrent_bias_init (Callable)
epsilon (float)
gamma (float)
device (device | None)
dtype (dtype | None)
Methods
__init__
(input_size, hidden_size[, bias, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
extra_repr
()Return the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(inp[, state])Run one step of the recurrent cell.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.init_weights
()ipu
([device])Move all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
mtia
([device])Move all model parameters and buffers to the MTIA.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post-hook to be run after module's
load_state_dict()
is called.register_load_state_dict_pre_hook
(hook)Register a pre-hook to be run before module's
load_state_dict()
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_post_hook
(hook)Register a post-hook for the
state_dict()
method.register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
set_submodule
(target, module[, strict])Set the submodule given by
target
if it exists, otherwise throw an error.share_memory
()See
torch.Tensor.share_memory_()
.state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.uses_double_state
()Return True if forward returns (h, c), else just h.
xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
training