torchrecurrent.LEMCell
- class torchrecurrent.LEMCell(input_size, hidden_size, bias=True, recurrent_bias=True, cell_bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function xavier_uniform_>, cell_kernel_init=<function xavier_uniform_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, cell_bias_init=<function zeros_>, dt=1.0, device=None, dtype=None)
A Long Expressive Memory (LEM) recurrent cell.
Implements the LEM update rule from “Long expressive memory unit” <https://arxiv.org/pdf/2110.04744>_.
\[\begin{split}\begin{aligned} \boldsymbol{\Delta t}(t) &= \Delta t \,\hat{\sigma}\bigl( \mathbf{W}_{ih}^{1}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{1} + \mathbf{W}_{hh}^{1}\,\mathbf{h}(t-1) + \mathbf{b}_{hh}^{1} \bigr), \\ \overline{\boldsymbol{\Delta t}}(t) &= \Delta t \,\hat{\sigma}\bigl( \mathbf{W}_{ih}^{2}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{2} + \mathbf{W}_{hh}^{2}\,\mathbf{h}(t-1) + \mathbf{b}_{hh}^{2} \bigr), \\ \mathbf{c}(t) &= \bigl(1 - \boldsymbol{\Delta t}(t)\bigr)\circ\mathbf{c}(t-1) + \boldsymbol{\Delta t}(t)\circ\sigma\bigl( \mathbf{W}_{ih}^{c}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{c} + \mathbf{W}_{hh}^{c}\,\mathbf{h}(t-1) + \mathbf{b}_{hh}^{c} \bigr), \\ \mathbf{h}(t) &= \bigl(1 - \boldsymbol{\Delta t}(t)\bigr)\circ\mathbf{h}(t-1) + \boldsymbol{\Delta t}(t)\circ\sigma\bigl( \mathbf{W}_{ih}^{h}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{h} + \mathbf{W}_{ch}\,\mathbf{c}(t) + \mathbf{b}_{ch} \bigr) \end{aligned}\end{split}\]where \(\hat{\sigma}\) is the sigmoid function and \(\circ\) denotes element-wise multiplication.
- Parameters:
input_size (int) – Number of expected features in the input tensor.
hidden_size (int) – Number of features in the hidden and cell states.
bias (bool, optional) – If
False
, disables \(\mathbf{b}_{ih}\). Default:True
.recurrent_bias (bool, optional) – If
False
, disables \(\mathbf{b}_{hh}\). Default:True
.cell_bias (bool, optional) – If
False
, disables \(\mathbf{b}_{ch}\). Default:True
.kernel_init (Callable) – Initializer for the input-to-hidden weight matrix.
recurrent_kernel_init (Callable) – Initializer for the hidden-to-hidden weight matrix.
cell_kernel_init (Callable) – Initializer for the cell-to-hidden weight matrix.
bias_init (Callable) – Initializer for input biases.
recurrent_bias_init (Callable) – Initializer for hidden biases.
cell_bias_init (Callable) – Initializer for cell biases.
dt (float) – Integration time step Δt. Default: 1.0.
device (torch.device, optional) – Device on which to place parameters.
dtype (torch.dtype, optional) – Data type for parameters.
- Inputs:
inp (Tensor): shape (batch, input_size) or (input_size,).
- state (Tensor or Tuple[Tensor, Tensor], optional):
Previous (h, c) states each of shape (batch, hidden_size) or (hidden_size,). Defaults to zeros if not provided.
- Outputs:
new_state (Tensor): Updated hidden state, same shape as h.
new_cstate (Tensor): Updated cell state, same shape as c.
- weight_ih
Input-to-hidden weight matrix, shape (4*hidden_size, input_size).
- Type:
Tensor
- weight_hh
Hidden-to-hidden weight matrix, shape (3*hidden_size, hidden_size).
- Type:
Tensor
- weight_ch
Cell-to-hidden weight matrix, shape (hidden_size, hidden_size).
- Type:
Tensor
- bias_ih
Input bias, shape (4*hidden_size,).
- Type:
Tensor
- bias_hh
Hidden bias, shape (3*hidden_size,).
- Type:
Tensor
- bias_ch
Cell bias, shape (hidden_size,).
- Type:
Tensor
- Examples::
>>> cell = LEMCell(16, 32, dt=0.5) >>> x = torch.randn(8, 16) # batch=8, input_size=16 >>> h0 = torch.zeros(8, 32) >>> c0 = torch.zeros(8, 32) >>> h1, c1 = cell(x, (h0, c0))
- __init__(input_size, hidden_size, bias=True, recurrent_bias=True, cell_bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function xavier_uniform_>, cell_kernel_init=<function xavier_uniform_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, cell_bias_init=<function zeros_>, dt=1.0, device=None, dtype=None)
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
input_size (int)
hidden_size (int)
bias (bool)
recurrent_bias (bool)
cell_bias (bool)
kernel_init (Callable)
recurrent_kernel_init (Callable)
cell_kernel_init (Callable)
bias_init (Callable)
recurrent_bias_init (Callable)
cell_bias_init (Callable)
dt (float)
device (device | None)
dtype (dtype | None)
Methods
__init__
(input_size, hidden_size[, bias, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
extra_repr
()Return the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(inp[, state])Run one step of the recurrent cell.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.init_weights
()ipu
([device])Move all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
mtia
([device])Move all model parameters and buffers to the MTIA.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post-hook to be run after module's
load_state_dict()
is called.register_load_state_dict_pre_hook
(hook)Register a pre-hook to be run before module's
load_state_dict()
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_post_hook
(hook)Register a post-hook for the
state_dict()
method.register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
set_submodule
(target, module[, strict])Set the submodule given by
target
if it exists, otherwise throw an error.share_memory
()See
torch.Tensor.share_memory_()
.state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.uses_double_state
()Return True if forward returns (h, c), else just h.
xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
input_size
hidden_size
bias
recurrent_bias
training