torchrecurrent.STARCell
- class torchrecurrent.STARCell(input_size, hidden_size, bias=True, recurrent_bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function xavier_uniform_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, device=None, dtype=None)
A stackable recurrent cell (STAR) cell.
Based on the “Stackable recurrent cell” proposed in arXiv:1911.11033.
The cell computes its update as:
\[\begin{split}\begin{aligned} \mathbf{z}(t) &= \tanh\bigl(\mathbf{W}_{ih}^{z}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{z}\bigr), \\ \mathbf{k}(t) &= \sigma\bigl(\mathbf{W}_{ih}^{k}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{k} + \mathbf{W}_{hh}^{k}\,\mathbf{h}(t-1) + \mathbf{b}_{hh}^{k}\bigr), \\ \mathbf{h}(t) &= \tanh\bigl((1 - \mathbf{k}(t)) \circ \mathbf{h}(t-1) + \mathbf{k}(t) \circ \mathbf{z}(t)\bigr), \end{aligned}\end{split}\]where \(\sigma\) is the sigmoid function and \(\circ\) denotes elementwise multiplication.
- Parameters:
input_size (int) – Number of features in the input \(\mathbf{x}(t)\).
hidden_size (int) – Number of features in the hidden state \(\mathbf{h}(t)\).
bias (bool, optional) – If
False
, disables \(\mathbf{b}_{ih}\). Default:True
.recurrent_bias (bool, optional) – If
False
, disables \(\mathbf{b}_{hh}\). Default:True
.kernel_init (Callable, optional) – Initialization for input-to-hidden weights \(\mathbf{W}_{ih}\) (both z and k parts). Default:
nn.init.xavier_uniform_
.recurrent_kernel_init (Callable, optional) – Initialization for hidden-to-hidden weights \(\mathbf{W}_{hh}^{k}\). Default:
nn.init.xavier_uniform_
.bias_init (Callable, optional) – Initialization for input biases \(\mathbf{b}_{ih}^{z}\) and \(\mathbf{b}_{ih}^{k}\). Default:
nn.init.zeros_
.recurrent_bias_init (Callable, optional) – Initialization for hidden bias \(\mathbf{b}_{hh}^{k}\). Default:
nn.init.zeros_
.device (torch.device, optional) – Device for parameters.
dtype (torch.dtype, optional) – Data type for parameters.
- Inputs:
- inp (Tensor): Input at current time step,
shape \((N, input\_size)\) or \((input\_size)\).
- state (Tensor or Tuple[Tensor,…], optional): Previous hidden
state \(\mathbf{h}(t-1)\), shape \((N, hidden\_size)\) or \((hidden\_size)\). Defaults to zero if not provided.
- Outputs:
- new_state (Tensor): Updated hidden state
\(\mathbf{h}(t)\), shape \((N, hidden\_size)\) or \((hidden\_size)\).
- weight_ih
Input-to-hidden weights, shape (2*hidden_size, input_size), where the first hidden_size rows are \(W_{ih}^{z}\) and the next hidden_size rows are \(W_{ih}^{k}\).
- Type:
Tensor
- weight_hh
Hidden-to-hidden weights for gate k, shape (hidden_size, hidden_size).
- Type:
Tensor
- bias_ih
Input biases, shape (2*hidden_size,), concatenated \(b_{ih}^{z}\) and \(b_{ih}^{k}\).
- Type:
Tensor
- bias_hh
Hidden bias for gate k, shape (hidden_size,).
- Type:
Tensor
- Examples::
>>> cell = STARCell(input_size=16, hidden_size=32) >>> seq = torch.randn(10, 8, 16) # seq length 10, batch size 8 >>> h = torch.zeros(8, 32) # initial state >>> outputs = [] >>> for t in range(10): ... h = cell(seq[t], h) ... outputs.append(h)
- __init__(input_size, hidden_size, bias=True, recurrent_bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function xavier_uniform_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, device=None, dtype=None)
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
input_size (int)
hidden_size (int)
bias (bool)
recurrent_bias (bool)
kernel_init (Callable)
recurrent_kernel_init (Callable)
bias_init (Callable)
recurrent_bias_init (Callable)
device (device | None)
dtype (dtype | None)
Methods
__init__
(input_size, hidden_size[, bias, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
extra_repr
()Return the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(inp[, state])Run one step of the recurrent cell.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.init_weights
()ipu
([device])Move all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
mtia
([device])Move all model parameters and buffers to the MTIA.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post-hook to be run after module's
load_state_dict()
is called.register_load_state_dict_pre_hook
(hook)Register a pre-hook to be run before module's
load_state_dict()
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_post_hook
(hook)Register a post-hook for the
state_dict()
method.register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
set_submodule
(target, module[, strict])Set the submodule given by
target
if it exists, otherwise throw an error.share_memory
()See
torch.Tensor.share_memory_()
.state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.uses_double_state
()Return True if forward returns (h, c), else just h.
xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
input_size
hidden_size
bias
recurrent_bias
training