torchrecurrent.MUT3Cell#
- class torchrecurrent.MUT3Cell(input_size, hidden_size, bias=True, recurrent_bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function xavier_uniform_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, device=None, dtype=None)[source]#
A Mutated Unit Type 3 (MUT3) recurrent cell.
[PMLR]
\[\begin{split}\begin{aligned} \mathbf{z}(t) &= \sigma\Bigl( \mathbf{W}_{ih}^{z}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{z} + \mathbf{W}_{hh}^{z}\,\mathbf{h}(t-1) + \mathbf{b}_{hh}^{z} \Bigr), \\ \mathbf{r}(t) &= \sigma\Bigl( \mathbf{x}(t) + \mathbf{W}_{hh}^{r}\,\mathbf{h}(t-1) + \mathbf{b}_{hh}^{r} \Bigr), \\ \mathbf{h}(t) &= \Bigl[\tanh\bigl( \mathbf{W}_{hh}^{h}\,(\mathbf{r}(t)\circ\mathbf{h}(t-1)) + \mathbf{b}_{hh}^{h} + \mathbf{W}_{ih}^{h}\,\mathbf{x}(t) + \mathbf{b}_{ih}^{h} \bigr)\Bigr]\circ\mathbf{z}(t) + \mathbf{h}(t-1)\circ\bigl(1 - \mathbf{z}(t)\bigr) \end{aligned}\end{split}\]where \(\sigma\) is the sigmoid function and \(\circ\) denotes element-wise multiplication.
- Parameters:
input_size – The number of expected features in the input
xhidden_size – The number of features in the hidden state
hbias – If
False, the layer does not use input-side biasb_{ih}. Default:Truerecurrent_bias – If
False, the layer does not use recurrent biasb_{hh}. Default:Truekernel_init – Initializer for
W_{ih}. Default:torch.nn.init.xavier_uniform_()recurrent_kernel_init – Initializer for
W_{hh}. Default:torch.nn.init.xavier_uniform_()bias_init – Initializer for
b_{ih}whenbias=True. Default:torch.nn.init.zeros_()recurrent_bias_init – Initializer for
b_{hh}whenrecurrent_bias=True. Default:torch.nn.init.zeros_()device – The desired device of parameters.
dtype – The desired floating point type of parameters.
- Inputs: input, h_0
input of shape
(batch, input_size)or(input_size,): tensor containing input featuresh_0 of shape
(batch, hidden_size)or(hidden_size,): tensor containing the initial hidden state
If h_0 is not provided, it defaults to zero.
- Outputs: h_1
h_1 of shape
(batch, hidden_size)or(hidden_size,): tensor containing the next hidden state
- Variables:
weight_ih – the learnable input–hidden weights, of shape
(3*hidden_size, input_size)(z, r, hparts)weight_hh – the learnable hidden–hidden weights, of shape
(3*hidden_size, hidden_size)(z, r, hparts)bias_ih – the learnable input–hidden biases, of shape
(3*hidden_size)bias_hh – the learnable hidden–hidden biases, of shape
(3*hidden_size)
Examples:
>>> cell = MUT3Cell(10, 20) >>> x = torch.randn(5, 3, 10) # (time_steps, batch, input_size) >>> h = torch.zeros(3, 20) # (batch, hidden_size) >>> out = [] >>> for t in range(x.size(0)): ... h = cell(x[t], h) ... out.append(h) >>> out = torch.stack(out, dim=0) # (time_steps, batch, hidden_size)
- __init__(input_size, hidden_size, bias=True, recurrent_bias=True, kernel_init=<function xavier_uniform_>, recurrent_kernel_init=<function xavier_uniform_>, bias_init=<function zeros_>, recurrent_bias_init=<function zeros_>, device=None, dtype=None)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(input_size, hidden_size[, bias, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(inp[, state])Run one step of the recurrent cell.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.init_weights()ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.uses_double_state()Return True if forward returns (h, c), else just h.
xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchesweight_ihweight_hhbias_ihbias_hhinput_sizehidden_sizebiasrecurrent_biastraining